|
|
A320433
|
|
Expansion of e.g.f. exp(4 * (1 - exp(x)) + x).
|
|
1
|
|
|
1, -3, 5, 5, -43, -27, 597, 805, -11883, -40475, 265685, 2133157, -3405803, -107760283, -301542315, 4458255397, 42421260949, -45046794011, -3365690666283, -19844416105563, 138274174035221, 2917746747446373, 11092963732101461, -207438902364296411, -3205301465165742187
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..24.
|
|
FORMULA
|
a(0) = 1 and a(n) = a(n-1) - 4 * Sum_{k=0..n-1} binomial(n-1,k) * a(k) for n > 0.
a(n) = exp(4) * Sum_{k>=0} (k + 1)^n * (-4)^k / k!.
a(n) = Sum_{k=0..n} binomial(n,k) * Bell(k, -4). - Vaclav Kotesovec, Jul 06 2020
|
|
MATHEMATICA
|
m = 24; Range[0, m]! * CoefficientList[Series[Exp[4 * (1 - Exp[x]) + x], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -4], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
|
|
PROG
|
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(4*(1-exp(x))+x)))
|
|
CROSSREFS
|
Column k=4 of A335977.
Cf. A078945, A335982.
Sequence in context: A072624 A147976 A019247 * A165142 A231809 A186969
Adjacent sequences: A320430 A320431 A320432 * A320434 A320435 A320436
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Seiichi Manyama, Jul 06 2020
|
|
STATUS
|
approved
|
|
|
|