TILE COUNT IN THE INTERIOR OF REGULAR n-GONS DISSECTED BY MEDIANS

RICHARD J. MATHAR

Abstract

The regular N-gon is subdivided into smaller polygons (tiles) by the subset of diagonals which connect the N vertices with the midpoints of their $N-2$ opposite edges.

1. Summary

Given the N sided regular polygon, its interior is dissected into non-overlapping regions (polygons, tiles) by $N(N-2)$ diagonals. Each diagonal starts at one of the N vertices and ends at the center of one of the $N-2$ opposite edges [1, A320422]. (Opposite edges of a vertex are all those that do not contain the vertex.)

References

1. O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2018), http://oeis.org/. MR 3822822
URL: http://www.mpia-hd.mpg.de/~mathar
Email address: mathar@mpia-hd.mpg.de
Max-Planck Inst. Astronomy, Köngistuhl 17, 69117 Heidelberg, Germany

[^0]

Figure 1. $N=3$ sides: 6 tiles, 2 triangular tiles replicated 3 times.

Figure 2. $N=4$ sides: 25 tiles.

Figure 3. $N=5$ sides: 50 tiles.

Figure 4. $N=6$ sides: 145 tiles.

Figure 5. $N=7$ sides: 224 tiles.

Figure 6. $N=8$ sides: 497 tiles.

Figure 7. $N=9$ sides: 684 tiles.

Figure 8. $N=10$ sides: 1281 tiles.

Figure 9. $N=11$ sides: 1650 tiles.

Figure 10. $N=12$ sides: 2713 tiles.

[^0]: Date: January 8, 2019.
 2010 Mathematics Subject Classification. Primary 52B05, 51M04; Secondary 52C20, 05B45.
 Key words and phrases. Polygons, Dissection, Faces, Tiling, Diagonals.

