login
A320356
Number of strict connected antichains of multisets whose multiset union is an integer partition of n.
7
1, 1, 2, 3, 5, 8, 13, 22, 35, 62, 98, 171, 277
OFFSET
0,3
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
EXAMPLE
The a(1) = 1 through a(6) = 13 clutters:
{{1}} {{2}} {{3}} {{4}} {{5}} {{6}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}} {{1,5}}
{{1,1,1}} {{2,2}} {{2,3}} {{2,4}}
{{1,1,2}} {{1,1,3}} {{3,3}}
{{1,1,1,1}} {{1,2,2}} {{1,1,4}}
{{1,1,1,2}} {{1,2,3}}
{{1,1,1,1,1}} {{2,2,2}}
{{1,1},{1,2}} {{1,1,1,3}}
{{1,1,2,2}}
{{1,1,1,1,2}}
{{1,1},{1,3}}
{{1,1,1,1,1,1}}
{{1,2},{1,1,1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
antiQ[s_]:=Select[Tuples[s, 2], And[UnsameQ@@#, submultisetQ@@#]&]=={};
Table[Length[Select[Join@@mps/@IntegerPartitions[n], And[UnsameQ@@#, Length[csm[#]]==1, antiQ[#]]&]], {n, 8}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 11 2018
STATUS
approved