login
A320344
Expansion of e.g.f. log(1 + x)/(1 - log(1 + x))^2.
1
0, 1, 3, 8, 26, 94, 406, 1896, 10440, 59472, 405264, 2673648, 22396128, 160828368, 1704287568, 11993279232, 177349981824, 957018589056, 25766036316288, 33555346603776, 5403108443855616, -28811285794990080, 1643455634670489600, -21001090458387594240, 692074413969784289280
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*A001563(k).
E.g.f.: Sum_{k>=0} k * log(1+x)^k. - Seiichi Manyama, Apr 22 2022
MAPLE
seq(n!*coeff(series(log(1+x)/(1-log(1+x))^2, x=0, 25), x, n), n=0..24); # Paolo P. Lava, Jan 29 2019
MATHEMATICA
nmax = 24; CoefficientList[Series[Log[1 + x]/(1 - Log[1 + x])^2, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k k!, {k, 0, n}], {n, 0, 24}]
PROG
(PARI) my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*log(1+x)^k)))) \\ Seiichi Manyama, Apr 22 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 22 2019
STATUS
approved