login
A320336
Numerators of the fractions a(0)/(a(1) - a(0)), a(1)/(a(2) - a(1)), a(2)/(a(3) - a(2)), ... such that the sum Sum_{n>=1} a(n-1)/(a(n) - a(n-1)) has the concatenation of these numerators, starting from a(1), as decimal part. Case a(0) = 1, a(1) = 13.
11
1, 13, 276, 69578731, 8400530190113978524440, 49897684059619962746027095165660646312316539507342111435767
OFFSET
0,2
COMMENTS
It appears that fractions of this kind with a(0)=1 exist only for a(1) equal to 4 (A320335) and 13 (this sequence).
Next term has 153 digits. - Giovanni Resta, Oct 11 2018
EXAMPLE
1/(13-1) = 0.0833...
At the beginning instead of 13 we have 08 as first decimal digit. Adding the second term this is fixed.
1/(13-1) + 13/(276 - 13) = 0.13276299...
1/(13-1) + 13/(276 - 13) + 276/(69578731 - 276) = 0.1327669578731757 ...
The sum is 0.13 276 69578731 8400530190113978524440 ...
MAPLE
P:=proc(q, h) local a, b, d, t, x, n; x:=1; a:=1/(h-1); b:=ilog10(h-1)+1; d:=h; print(d); t:=h; for n from h+1 to q do if trunc(evalf(a+t/(n-t), 100)*10^(b+ilog10(n)+1))=d*10^(ilog10(n)+1)+n then b:=b+ilog10(n)+1; d:=d*10^(ilog10(n)+1)+n; a:=a+t/(n-t); t:=n; x:=n+1; print(n); fi; od; end: P(10^10, 13);
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Oct 11 2018
EXTENSIONS
a(3)-a(5) from Giovanni Resta, Oct 11 2018
STATUS
approved