login
A320307
Numerators of the fractions a(0)/(a(1) - a(0)), a(1)/(a(2) - a(1)), a(2)/(a(3) - a(2)), ... such that the sum 1/a(0) + Sum_{n>=1} a(n-1)/(a(n) - a(n-1)) has the concatenation of these numerators as decimal part. Case a(0) = 10.
15
10, 3167, 9115670120, 542008360464753577575056956, 7830689983639267579884170593492086524040157478312672952864203282974067
OFFSET
0,1
COMMENTS
It appears that fractions of this kind exist only for a(0) equal to 3 (A320306), 10 (this sequence), 13 (A320308) and 38 (A320309).
Next term has 184 digits. - Giovanni Resta, Oct 11 2018
EXAMPLE
1/10 = 0.1000...
1/10 + 10/(3167 - 10) = 0.103167564...
1/10 + 10/(3167 - 10) + 3167/(9115670120 - 3167) = 0.1031679115670120373...
The sum is 0.10 3167 9115670120 542008360464753577575056956 ...
MAPLE
P:=proc(q, h) local a, b, d, n, t, x; x:=h+1; a:=1/h; b:=ilog10(h)+1;
d:=h; print(d); t:=1/a; for n from x to q do if
trunc(evalf(a+t/(n-t), 100)*10^(b+ilog10(n)+1))=d*10^(ilog10(n)+1)+n
then b:=b+ilog10(n)+1; d:=d*10^(ilog10(n)+1)+n; a:=a+t/(n-t); t:=n;
x:=n+1; print(n); fi; od; end: P(10^20, 10);
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Oct 11 2018
EXTENSIONS
a(3)-a(5) from Giovanni Resta, Oct 11 2018
STATUS
approved