login
A320303
a(n)/2^n is the expected value of the length of the longest palindromic suffix of a random length-n binary string.
0
2, 6, 18, 44, 108, 242, 544, 1160, 2484, 5158, 10740, 21954, 44958, 91080, 184700, 372164, 750312, 1507080, 3028020, 6070856, 12173290, 24380120, 48831270, 97737536, 195633046, 391432098, 783212312, 1566788842, 3134338546, 6269470370, 12540592310, 25082901244, 50169366086
OFFSET
1,1
EXAMPLE
For n = 3, the strings 000, 010, 101, 111 have longest palindromic suffix of length 3; 001, 110 have longest palindromic suffix of length 1, and 011, 100 have longest palindromic suffix of length 2. So a(3) = 4*3 + 2*1 + 2*2 = 18.
CROSSREFS
Sequence in context: A272934 A192708 A233531 * A319415 A230137 A120414
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Oct 10 2018
EXTENSIONS
a(21)-a(33) from Giovanni Resta, Oct 10 2018
STATUS
approved