login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320287 a(n) = n! * [x^n] Sum_{k>=0} exp(n^k*x)*x^k/k!. 1
1, 2, 6, 56, 2050, 318752, 252035714, 980755711616, 23647746367946754, 3088949241542073508352, 2940240000900000020000000002, 16218429504693724464229916894517248, 748528620411995327278028288988088683724802, 210422023062476527874650307058798916093350502080512 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..48

FORMULA

a(n) = [x^n] Sum_{k>=0} x^k/(1 - n^k*x)^(k+1).

a(n) = Sum_{k=0..n} binomial(n,k)*n^(k*(n-k)).

MATHEMATICA

Join[{1}, Table[n! SeriesCoefficient[Sum[Exp[n^k x] x^k/k!, {k, 0, n}], {x, 0, n}], {n, 13}]]

Join[{1}, Table[SeriesCoefficient[Sum[x^k/(1 - n^k x)^(k + 1), {k, 0, n}], {x, 0, n}], {n, 13}]]

Join[{1}, Table[Sum[Binomial[n, k] n^(k (n - k)), {k, 0, n}], {n, 13}]]

PROG

(PARI) for(n=0, 20, print1(sum(k=0, n, binomial(n, k)*n^(k*(n-k))), ", ")) \\ G. C. Greubel, Nov 04 2018

(MAGMA) [(&+[Binomial(n, k)*n^(k*(n-k)):k in [0..n]]): n in [0..20]]; // G. C. Greubel, Nov 04 2018

CROSSREFS

Cf. A047863, A135079.

Sequence in context: A211933 A167010 A014070 * A198445 A248377 A326968

Adjacent sequences:  A320284 A320285 A320286 * A320288 A320289 A320290

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Oct 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 01:36 EDT 2021. Contains 342912 sequences. (Running on oeis4.)