login
A320253
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k - Sum_{j=1..k} exp(j*x)).
10
1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 23, 13, 0, 1, 10, 86, 261, 75, 0, 1, 15, 230, 1836, 3947, 541, 0, 1, 21, 505, 7900, 52250, 74613, 4683, 0, 1, 28, 973, 25425, 361754, 1858716, 1692563, 47293, 0, 1, 36, 1708, 67473, 1706629, 20706700, 79345346, 44794221, 545835, 0
OFFSET
0,8
FORMULA
E.g.f. of column k: 1/(1 + k - exp(x)*(exp(k*x) - 1)/(exp(x) - 1)).
EXAMPLE
E.g.f. of column k: A_k(x) = 1 + (1/2)*k*(k + 1)*x/1! + (1/6)*k*(3*k^3 + 8*k^2 + 6*k + 1)*x^2/2! + (1/4)*k^2*(k + 1)^2*(3*k^2 + 7*k + 3)*x^3/3! + (1/30)*k*(45*k^7 + 270*k^6 + 635*k^5 + 741*k^4 + 440*k^3 + 115*k^2 + 5*k - 1)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 6, 10, 15, ...
0, 3, 23, 86, 230, 505, ...
0, 13, 261, 1836, 7900, 25425, ...
0, 75, 3947, 52250, 361754, 1706629, ...
0, 541, 74613, 1858716, 20706700, 143195025, ...
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[1/(1 + k - Sum[Exp[i x], {i, 1, k}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, n! SeriesCoefficient[1/(1 + k - Exp[x] (Exp[k x] - 1)/(Exp[x] - 1)), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
CROSSREFS
Main diagonal gives A319508.
Sequence in context: A102752 A104548 A085707 * A141947 A216804 A010607
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Oct 08 2018
STATUS
approved