login
Expansion of Product_{k=1..10} theta_3(q^k), where theta_3() is the Jacobi theta function.
6

%I #12 Feb 16 2025 08:33:56

%S 1,2,2,6,8,10,22,26,36,60,78,104,146,192,236,332,420,500,674,816,986,

%T 1256,1488,1752,2174,2566,2940,3550,4102,4640,5528,6292,6948,8160,

%U 9172,10060,11618,12840,13980,15940,17590,18844,21252,23308,24772,27926,30360,31932

%N Expansion of Product_{k=1..10} theta_3(q^k), where theta_3() is the Jacobi theta function.

%C Also the number of integer solutions (a_1, a_2, ... , a_10) to the equation a_1^2 + 2*a_2^2 + ... + 10*a_10^2 = n.

%H Seiichi Manyama, <a href="/A320242/b320242.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%Y Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), this sequence (m=10).

%Y Cf. A320067.

%K nonn,changed

%O 0,2

%A _Seiichi Manyama_, Oct 08 2018