login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320052 Number of product-sum knapsack partitions of n. Number of integer partitions y of n such that every product of sums of the parts of a multiset partition of any submultiset of y is distinct. 7
1, 0, 1, 1, 1, 2, 3, 3, 4, 4, 6, 8, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..12.

EXAMPLE

The sequence of product-sum knapsack partitions begins:

0: ()

1:

2: (2)

3: (3)

4: (4)

5: (5) (3,2)

6: (6) (4,2) (3,3)

7: (7) (5,2) (4,3)

8: (8) (6,2) (5,3) (4,4)

9: (9) (7,2) (6,3) (5,4)

10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3)

11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3) (4,4,3)

12: (12) (10,2) (9,3) (8,4) (7,5) (7,3,2) (6,6) (4,4,4)

A complete list of all products of sums of multiset partitions of submultisets of (4,3,3) is:

() = 1

(3) = 3

(4) = 4

(3+3) = 6

(3+4) = 7

(3+3+4) = 10

(3)*(3) = 9

(3)*(4) = 12

(3)*(3+4) = 21

(4)*(3+3) = 24

(3)*(3)*(4) = 36

These are all distinct, so (4,3,3) is a product-sum knapsack partition of 10.

MATHEMATICA

sps[{}]:={{}};

sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

rrsuks[n_]:=Select[IntegerPartitions[n], Function[q, UnsameQ@@Apply[Times, Apply[Plus, Union@@mps/@Union[Subsets[q]], {2}], {1}]]];

Table[Length[rrsuks[n]], {n, 12}]

CROSSREFS

Cf. A001970, A066739, A108917, A275972, A292886, A316313, A318949, A319318, A319320, A319910, A319913.

Cf. A267597, A320053, A320054, A320055, A320056, A320057, A320058.

Sequence in context: A274017 A267597 A238221 * A168173 A095916 A130121

Adjacent sequences: A320049 A320050 A320051 * A320053 A320054 A320055

KEYWORD

nonn,more

AUTHOR

Gus Wiseman, Oct 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 17:11 EST 2023. Contains 359845 sequences. (Running on oeis4.)