This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320000 Square array A(n, k) read by descending antidiagonals: A(1, 1) = 2, A(1, k) = 1 for k > 1, and for n > 1, A(n, k) = Sum_{d|n, d>=k} A010051(1+d)*[Sum_{i=0..valuation(n,1+d)} A((n/d)/((1+d)^i), 1+d)]. 5

%I

%S 2,1,3,1,1,0,1,0,0,4,1,0,0,1,0,1,0,0,1,0,4,1,0,0,1,0,2,0,1,0,0,0,0,1,

%T 0,5,1,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,2,1,0,0,0,0,1,0,0,0,1,0,1,0,

%U 0,0,0,0,0,0,0,1,0,6,1,0,0,0,0,0,0,0,0,1,0,2,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0

%N Square array A(n, k) read by descending antidiagonals: A(1, 1) = 2, A(1, k) = 1 for k > 1, and for n > 1, A(n, k) = Sum_{d|n, d>=k} A010051(1+d)*[Sum_{i=0..valuation(n,1+d)} A((n/d)/((1+d)^i), 1+d)].

%C This square array gives the values obtained from the recursive PARI-program that _M. F. Hasler_ has provided Oct 05 2009 for A014197, in its two-argument form.

%H Antti Karttunen, <a href="/A320000/b320000.txt">Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of the array</a>

%e Array begins as:

%e n | k=1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, ...

%e ---+------------------------------------------------

%e 1 | 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 2 | 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 3 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 4 | 4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 5 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 6 | 4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 7 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 8 | 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 9 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 10 | 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...

%e 11 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 12 | 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, ...

%e 13 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 14 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 15 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 16 | 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%o (PARI)

%o up_to = 120;

%o A320000sq(n, k) = if(1==n, if(1==k,2,1), sumdiv(n, d, if(d>=k && isprime(d+1), my(p=d+1, q=n/d); sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))))); \\ After _M. F. Hasler_'s code in A014197

%o A320000list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A320000sq(col,(a-(col-1))))); (v); };

%o v320000 = A320000list(up_to);

%o A320000(n) = v320000[n];

%Y Cf. A014197 (column 1).

%Y Cf. A000010, A322310.

%K nonn,tabl

%O 1,1

%A _Antti Karttunen_, Dec 03 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)