login
Coordination sequence for (9^3, 3.9^2) net with respect to a vertex of type 3.9^2.
2

%I #32 Jan 19 2020 18:13:17

%S 1,3,4,8,12,11,18,19,18,28,26,25,38,33,32,48,40,39,58,47,46,68,54,53,

%T 78,61,60,88,68,67,98,75,74,108,82,81,118,89,88,128,96,95,138,103,102,

%U 148,110,109,158,117,116,168,124,123,178,131,130,188,138,137,198,145,144,208,152,151

%N Coordination sequence for (9^3, 3.9^2) net with respect to a vertex of type 3.9^2.

%C This net may be regarded as a tiling of the plane by 9-gons and triangles. There are two kinds of vertices: (a) 9^3 vertices, where three 9-gons meet, and (b) 3.9^2 vertices, where a triangle and two 9-gons meet. The present sequence is the coordination sequence with respect to a vertex of type 3.9^2. See also A066393.

%C The coordination sequence was found using the "coloring book" method. The link below shws the trunsks and branches structure. The calculations are very similar to those used for the 3.12.12 uniform tiling in the CGS-NJAS paper.

%D Eon, Jean-Guillaume. "Geometrical relationships between nets mapped on isomorphic quotient graphs: examples." Journal of Solid State Chemistry 138.1 (1998): 55-65. See Fig. 1.

%H N. J. A. Sloane, <a href="/A319980/b319980.txt">Table of n, a(n) for n = 0..10000</a>

%H Chaim Goodman-Strauss and N. J. A. Sloane, <a href="https://doi.org/10.1107/S2053273318014481">A Coloring Book Approach to Finding Coordination Sequences</a>, Acta Cryst. A75 (2019), 121-134, also <a href="http://NeilSloane.com/doc/Cairo_final.pdf">on NJAS's home page</a>. Also <a href="http://arxiv.org/abs/1803.08530">arXiv:1803.08530</a>.

%H Jean-Guillaume Eon, <a href="https://doi.org/10.1107/S0108767301016609">Algebraic determination of generating functions for coordination sequences in crystal structures</a>, Acta Cryst. A58 (2002), 47-53. See Section 8.

%H N. J. A. Sloane, <a href="/A066393/a066393.jpg">A portion of the (9^3, 3.9^2) net</a>

%H N. J. A. Sloane, <a href="/A319980/a319980.png">Trunks and branches structure used to find the coordination sequence</a> (Blue = trunks, red = branches, green = twigs. The two thick red lines are the special branches.)

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).

%F G.f.: (1 + 3*x + 4*x^2 + 6*x^3 + 6*x^4 + 3*x^5 + 3*x^6 - 2*x^7)/(1 - x^3)^2.

%p A319980 := proc(n) local t1,t2,t3,k,r;

%p t1:=[1,3,4,8,12,11,18,19];

%p t2:=[20,14,14,20,14,14];

%p t3:=[-2,5,4,8,12,11];

%p if n <= 7 then t1[n+1]

%p else k:=floor(n/6); r:=n-6*k;

%p t2[r+1]*k+t3[r+1]; fi; end;

%p [seq(A319980(n),n=0..128)];

%t Join[{1, 3}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {4, 8, 12, 11, 18, 19}, 64]] (* _Jean-François Alcover_, Feb 07 2019 *)

%Y Cf. A066393.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Oct 13 2018