The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319954 Infinite word over {0,1,2} formed from list of binary words of lengths 0, 1, 2, etc., including empty word, each prefixed by a 2. 2
 2, 2, 0, 2, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 2, 0, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 1, 1, 2, 0, 1, 0, 0, 2, 0, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Rémy Sigrist, Table of n, a(n) for n = 0..25000 Carl Pomerance, John Michael Robson, and Jeffrey Shallit, Automaticity II: Descriptional complexity in the unary case, Theoretical computer science 180.1-2 (1997): 181-201. FORMULA a(n) = A030302(n+1) + [n belongs to A001855] (where [] is an Iverson bracket). - Rémy Sigrist, Oct 04 2018 EXAMPLE The word written without commas: 220212002012102112000200120102011210021012110211120000200012001020011... PROG (PARI) k=0; for (n=0, oo, b=binary(n+1); b[1]++; for (i=1, #b, print1 (b[i] ", "); if (k++==87, quit))) \\ Rémy Sigrist, Oct 04 2018 CROSSREFS Cf. A001855, A030302, A214339, A319953. Sequence in context: A285193 A213209 A049850 * A050949 A074943 A272011 Adjacent sequences:  A319951 A319952 A319953 * A319955 A319956 A319957 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Oct 04 2018 EXTENSIONS Data corrected and extended by Rémy Sigrist, Oct 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 17:14 EDT 2020. Contains 334828 sequences. (Running on oeis4.)