login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319949 a(n) = Product_{i=1..n} floor(4*i/3). 2
1, 2, 8, 40, 240, 1920, 17280, 172800, 2073600, 26956800, 377395200, 6038323200, 102651494400, 1847726899200, 36954537984000, 776045297664000, 17072996548608000, 409751917166592000, 10243797929164800000, 266338746158284800000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..20.

FORMULA

a(n) ~ (4/3)^n * n! * 2*sqrt(Pi) / (3^(1/4) * Gamma(1/4) * n^(1/4)).

Recurrence: 27*(3*n - 7)*a(n) = 54*(2*n - 5)*a(n-1) + 12*(12*n^2 - 42*n + 35)*a(n-2) + 8*(n-2)*(2*n - 5)*(3*n - 4)*(4*n - 9)*a(n-3).

MATHEMATICA

Table[Product[Floor[i*4/3], {i, 1, n}], {n, 1, 20}]

RecurrenceTable[{27*(3*n - 7)*a[n] == 54*(2*n - 5)*a[n-1] + 12*(12*n^2 - 42*n + 35)*a[n-2] + 8*(n-2)*(2*n - 5)*(3*n - 4)*(4*n - 9)*a[n-3], a[1]==1, a[2]==2, a[3]==8}, a, {n, 1, 20}]

PROG

(PARI) a(n) = prod(i=1, n, (4*i)\3); \\ Michel Marcus, Oct 03 2018

CROSSREFS

Cf. A004773, A010786, A180736, A275062, A319948, A319950.

Sequence in context: A296050 A055882 A002301 * A304070 A259869 A321733

Adjacent sequences:  A319946 A319947 A319948 * A319950 A319951 A319952

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Oct 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 23 00:58 EDT 2019. Contains 326211 sequences. (Running on oeis4.)