%I #8 Feb 16 2025 08:33:56
%S 525150234,527787366,528544218,553128198,612951066,675192294,
%T 735821562,982674438,998151162,998151174,5251502340,5277873660,
%U 5285442180,5531281980,6129510660,6751922940,7358215620,9826744380,9981511620,9981511740
%N Unitary sociable numbers of order 10.
%H J. O. M. Pedersen, <a href="http://web.archive.org/web/20130731050921/http://amicable.homepage.dk/knwnux.htm">Known Unitary Sociable Numbers of order different from four</a> [Via Internet Archive Wayback-Machine]
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitarySociableNumbers.html">Unitary Sociable Numbers</a>
%H J. O. M. Pedersen, <a href="/A319937/a319937.txt">Order 10 cycles</a>
%o (PARI) f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
%o isok10(n) = iferr(f(f(f(f(f(f(f(f(f(f(n)))))))))) == n, E, 0);
%o isok5(n) = iferr(f(f(f(f(f(n))))) == n, E, 0);
%o isok2(n) = iferr(f(f(n)) == n, E, 0);
%o isok1(n) = iferr(f(n) == n, E, 0);
%o isok(n) = isok10(n) && !isok1(n) && !isok2(n) && !isok5(n);
%Y Cf. A063919 (sum of proper unitary divisors).
%Y Cf. A002827 (unitary perfect), A063991 (unitary amicable).
%Y Cf. A097024 (order 5), A319917 (order 6), A097030 (order 14).
%K nonn,more,changed
%O 1,1
%A _Michel Marcus_, Oct 02 2018