OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = [x^5] DedekindEta(x)^n.
a(n) = A319933(n, 5).
From Chai Wah Wu, Jul 27 2022: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
G.f.: x*(-7*x^4 + 6*x^3 + 3*x^2 - 4*x + 1)/(x - 1)^6. (End)
MAPLE
a := n -> -(1/120)*n*(n-3)*(n-6)*(n^2-21*n+8):
seq(a(n), n=0..41);
PROG
(PARI) a(n)=-n*(n-3)*(n-6)*(n^2-21*n+8)/120 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Luschny, Oct 02 2018
STATUS
approved