A319929(n, k) can be discovered and motivated as follows.
Ask: When is $f(a, b)=x a+y b+z$ associative?

```
f(f(a,b), c) = f(a,f(b,c))
f(xa+yb+z,c) =f(a,xb+yc+z)
x(xa+yb+z)+yc + z=xa + y(xb+yc+z)+z
x'a}+xyb+xz+yc+z=xa+xyb+\mp@subsup{y}{}{2}c+yz+
(x
```

Since the a term, the c term and the constant term are independent, all three components must equal 0 .
(1) $x^{2}-x=0$ and
(2) $y^{2}-y=0$ and
(3) $(x-y) z=0$
(1) $x=1$ or $x=0$
(2) $y=1$ or $y=0$
(3) $x=y$ or $z=0$

Case 1: choose $x=1$ and $y=1$, then z is unrestricted
Case 2: choose $x=1$ and $y=0$, then z is 0
Case 3: choose $x=0$ and $y=1$, then z is 0
Case 4: choose $\mathrm{x}=0$ and $\mathrm{y}=0$, then z is unrestricted
We've learned that $f(a, b)$ is associative if and only if

$$
\begin{array}{lll}
& \mathrm{f}(\mathrm{a}, \mathrm{~b})=\mathrm{a}+\mathrm{b}+\mathrm{z} & \text { for any } \mathrm{z} \\
\text { or } & \mathrm{f}(\mathrm{a}, \mathrm{~b})=\mathrm{a} & \\
\text { or } & \mathrm{f}(\mathrm{a}, \mathrm{~b})=\mathrm{b} & \\
\text { or } & \mathrm{f}(\mathrm{a}, \mathrm{~b})=\mathrm{z} & \text { for any } \mathrm{z}
\end{array}
$$

There is no reason a, b and z cannot be complex numbers.
The last three functions are trivial examples of associativity. $\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{a}+\mathrm{b}+\mathrm{z}$ is addition with an offset. Its identity element is -z.

Now, there is another way to interpret the result of this investigation into simple associative arithmetic.
We can come away with a single function that is split into four cases.

$$
a+b+z 1 \quad \text { if } a \text { and } b \text { are in class } z 1
$$

a if a is in class $z 2$ and b is in class $z 1$

$$
f(a, b)=\{
$$

b if a is in class z 1 and b is in class z 2
z2 if a and b are in class $z 2$

We assume the following. The numbers z1 and z2 are not equal. The two classes are mutually exclusive and together they include all a and b. There is a suitable rule for adding elements of the two classes and placing the result in one of the classes.

A function of this form is globally associative. It has -z1 for its unique two-sided identity element. z 2 is its unique two-sided zero element, meaning $f(a, z 2)=z 2$ for all a. By itself, $f(a, b)=a+b+z 1$ has an identity element, $-z 1 ; f(a, b)=z 2$ has a zero element, $z 2$. For $f(a, b)=a$ by itself, any number can be a left zero element or a right identity element. The situation is reversed for $f(a, b)=b$.

If we restrict a and b to positive integers, use the positive odd numbers and the positive even numbers as the two classes, and choose $\mathrm{z} 1=-1$ and $\mathrm{z} 2=0$, we get $\mathrm{A} 319929(\mathrm{n}, \mathrm{k})$.

