login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319874 a(n) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15*14*13*12*11 + ... + (up to the n-th term). 9
10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800, 3628820, 3629180, 3635640, 3745080, 5489280, 31536000, 394329600, 5082739200, 60952953600, 670446201600, 670446201630, 670446202470, 670446225960, 670446859320, 670463302320, 670873719600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=10.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

EXAMPLE

a(1) = 10;

a(2) = 10*9 = 90;

a(3) = 10*9*8 = 720;

a(4) = 10*9*8*7 = 5040;

a(5) = 10*9*8*7*6 = 30240;

a(6) = 10*9*8*7*6*5 = 151200;

a(7) = 10*9*8*7*6*5*4 = 604800;

a(8) = 10*9*8*7*6*5*4*3 = 1814400;

a(9) = 10*9*8*7*6*5*4*3*2 = 3628800;

a(10) = 10*9*8*7*6*5*4*3*2*1 = 3628800;

a(11) = 10*9*8*7*6*5*4*3*2*1 + 20 = 3628820;

a(12) = 10*9*8*7*6*5*4*3*2*1 + 20*19 = 3629180;

a(13) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18 = 3635640;

a(14) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17 = 3745080;

a(15) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16 = 5489280;

a(16) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15 = 31536000;

a(17) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15*14 = 394329600;

a(18) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15*14*13 = 5082739200;

a(19) = 10*9*8*7*6*5*4*3*2*1 + 20*19*18*17*16*15*14*13*12 = 60952953600;

etc.

MAPLE

a:=(n, k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1, i=1..j)), j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1, i=1..k)), j=1..n): seq(a(n, 10), n=1..25); # Muniru A Asiru, Sep 30 2018

MATHEMATICA

k:=10; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])* Product[n-i-j+k+1, {i, 1, j }], {j, 1, k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])* Product[j-i+1, {i, 1, k} ], {j, 1, n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)

CROSSREFS

For similar sequences, see: A000217 (k=1), A319866 (k=2), A319867 (k=3), A319868 (k=4), A319869 (k=5), A319870 (k=6), A319871 (k=7), A319872 (k=8), A319873 (k=9), this sequence (k=10).

Sequence in context: A306958 A306957 A319893 * A159733 A265325 A038726

Adjacent sequences:  A319871 A319872 A319873 * A319875 A319876 A319877

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Sep 30 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 20:44 EDT 2019. Contains 328315 sequences. (Running on oeis4.)