OFFSET
1,3
COMMENTS
a(n) is the Welschinger invariant #n.
LINKS
Aubin Arroyo, Erwan Brugallé and Lucía López de Medrano, Recursive formulas for Welschinger invariants of the projective plane, International Mathematics Research Notices, 2011, 1107-1134; arXiv:0809.1541 [math.AG], 2008-2010. See numbers W2(n,0) in Section 7.3.
Erwan Brugallé, Géométries énumératives complexe, réelle et tropicale, Journées mathématiques X-UPS, École polytechnique, 2008. See Table 3, p. 54.
Antoine Chambert-Loir, Quand la géométrie devient tropicale, Pour la Science, No 492, October 2018 (in French).
I. Itenberg, V. Kharlamov & E. Shustin, Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. (2003), no. 49, pp. 2639-2653.
I. Itenberg, V. Kharlamov & E. Shustin, Welschinger invariant and enumeration of real rational curves, arXiv:math/0303378 [math.AG], 2003.
I. Itenberg, V. Kharlamov & E. Shustin, Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants, Uspekhi Mat. Nauk 59 (2004), no. 6(360), pp. 85-110.
I. Itenberg, V. Kharlamov & E. Shustin, Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants, arXiv:math/0407188 [math.AG], 2004.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Georges Perrotte, Sep 29 2018
EXTENSIONS
a(8)-a(9) added from Arroyo et al. and name clarified by Andrey Zabolotskiy, May 03 2022, based on contribution by Michel Marcus
STATUS
approved