login
A319754
a(n) = [x^n] Product_{k>=1} (1 - x^k)/(1 - n*x^k).
2
1, 0, 3, 24, 252, 3096, 46620, 823152, 16776648, 387413208, 9999989010, 285311493720, 8916100178843, 302875101365928, 11112006817455180, 437893890197853824, 18446744073423298800, 827240261878925204256, 39346408075284871499214, 1978419655659972977219880
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] exp(Sum_{k>=1} ( Sum_{d|k} d*(n^(k/d) - 1) ) * x^k/k).
a(n) ~ n^n. - Vaclav Kotesovec, Sep 27 2018
MATHEMATICA
Table[SeriesCoefficient[Product[(1 - x^k)/(1 - n x^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[Exp[Sum[Sum[d (n^(k/d) - 1), {d, Divisors[k]}] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 19}]
CROSSREFS
Main diagonal of A319753.
Sequence in context: A365147 A080523 A203423 * A218301 A233833 A219536
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 27 2018
STATUS
approved