login
A319599
Numbers k such that k mod (2, 3, 4, ... , i+1) = (d_i, d_i-1, ..., d_1), where d_1, d_2, ..., d_i are the digits of k, with MSD(k) = d_1 and LSD(k) = d_i.
1
0, 1, 10, 20, 1101, 1121, 11311, 31101, 40210, 340210, 4620020, 5431101, 7211311, 12040210, 24120020, 151651121, 165631101, 1135531101, 8084220020, 9117311311, 894105331101
OFFSET
0,3
EXAMPLE
a(11) = 5431101 because:
5431101 mod 2 = 1, 5431101 mod 3 = 0, 5431101 mod 4 = 1,
5431101 mod 5 = 1, 5431101 mod 6 = 3, 5431101 mod 7 = 4,
5431101 mod 8 = 5.
MAPLE
P:=proc(q) local a, i, j, n, ok; print(0); print(1); for n from 1 to q do
for i from 0 to 1 do a:=10*n+i; ok:=1; for j from 1 to ilog10(a)+1 do
if (a mod 10)<>((10*n+i) mod (j+1)) then ok:=0; break; else
a:=trunc(a/10); fi; od; if ok=1 then print(10*n+i); break; fi;
od; od; end: P(10^12);
CROSSREFS
Sequence in context: A018990 A280882 A335802 * A160479 A085222 A085221
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Sep 24 2018
STATUS
approved