Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #26 Sep 08 2022 08:46:23
%S 0,1,3,5,7,9,3951,4095,4097,12291,20485,21845,28679,30039,36873,
%T 16187247,16777215,16777217,16781313,50331651,50343939,83886085,
%U 83894277,83906565,83914757,89458005,89466197,89478485,89486677,117440519,117448711,117460999
%N Numbers in base 10 that are palindromic in bases 2, 8, and 16.
%C Intersection of A006995, A029803, and A029730.
%e 16187247 = 111101101111111101101111_2 = 75577557_8 = F6FF6F_16.
%t palQ[n_, b_] := PalindromeQ[IntegerDigits[n, b]];
%t Reap[Do[If[palQ[n, 2] && palQ[n, 8] && palQ[n, 16], Print[n]; Sow[n]], {n, 0, 10^6}]][[2, 1]] (* _Jean-François Alcover_, Sep 25 2018 *)
%o (Sage) [n for n in (0..10000) if Word(n.digits(2)).is_palindrome() and Word(n.digits(8)).is_palindrome() and Word(n.digits(16)).is_palindrome()]
%o (Magma) [n: n in [0..2*10^7] | Intseq(n, 2) eq Reverse(Intseq(n, 2)) and Intseq(n, 8) eq Reverse(Intseq(n, 8)) and Intseq(n, 16) eq Reverse(Intseq(n, 16))]; // _Vincenzo Librandi_, Sep 24 2018
%Y Cf. A006995 (base 2), A029803 (base 8), and A029730 (base 16).
%K nonn,base
%O 1,3
%A _Jeremias M. Gomes_, Sep 23 2018