login
A319578
a(n) = (1/3)*(n+2)^2*(3*n+3)!/(n+2)!^3.
0
1, 10, 140, 2310, 42042, 816816, 16628040, 350574510, 7595781050, 168212023980, 3792416540640, 86787993910800, 2011383287449200, 47123837020238400, 1114478745528638160, 26575401262863040830, 638330716607984804250, 15431925043610580004500, 375239440534109892741000
OFFSET
0,2
COMMENTS
Number of Schröder paths of length 2n+1 having n peaks.
FORMULA
a(n) = (n+2)*(3*n+2)!/((n+2)!^2*n!).
a(n) = A060693(2n+1,n).
MAPLE
a := n -> (n+2)*(3*n+2)!/((n+2)!^2*n!): seq(a(n), n = 0..18);
MATHEMATICA
Table[(n+2) (3*n+2)! / ((n+2)!^2 n!), {n, 0, 30}] (* Vincenzo Librandi, Oct 01 2018 *)
PROG
(PARI) a(n) = (1/3)*(n+2)^2*(3*n+3)!/(n+2)!^3; \\ Michel Marcus, Oct 01 2018
(Magma) [(1/3)*(n+2)^2*Factorial(3*n+3)/Factorial(n+2)^3: n in [0..20]]; // Vincenzo Librandi, Oct 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 30 2018
STATUS
approved