login
A319554
Expansion of 1/theta_4(q)^12 in powers of q = exp(Pi i t).
3
1, 24, 312, 2912, 21816, 139152, 783328, 3986112, 18650424, 81251896, 332798544, 1291339296, 4776117216, 16922753616, 57683178432, 189821722688, 604884735288, 1871370360240, 5633654421720, 16535803556064, 47405095227984, 132942579098368, 365211946954656
OFFSET
0,2
LINKS
FORMULA
Convolution inverse of A286346.
a(n) = (-1)^n * A004413(n).
a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^12.
PROG
(PARI) N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^12))
CROSSREFS
1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), A319552 (b=3), A284286 (b=4), A319553 (b=8), this sequence (b=12).
Cf. A002131, A002448 (theta_4(q)), A004413, A286346.
Sequence in context: A053215 A290939 A004413 * A069779 A288507 A199301
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2018
STATUS
approved