login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319544 a(n) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 - 13*14*15*16 + ... - (up to n). 8
1, 2, 6, 24, 19, -6, -186, -1656, -1647, -1566, -666, 10224, 10211, 10042, 7494, -33456, -33439, -33150, -27642, 82824, 82803, 82362, 72198, -172200, -172175, -171550, -154650, 319200, 319171, 318330, 292230, -543840, -543807, -542718, -504570, 869880 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In general, for alternating sequences that multiply the first k natural numbers, and subtract/add the products of the next k natural numbers (preserving the order of operations up to n), we have a(n) = (-1)^floor(n/k) * Sum_{i=1..k-1} (1-sign((n-i) mod k)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/k)+1) * (1-sign(i mod k)) * (Product_{j=1..k} (i-j+1)). Here k=4.

An alternating version of A319205.

LINKS

Table of n, a(n) for n=1..36.

FORMULA

a(n) = (-1)^floor(n/4) * Sum_{i=1..3} (1-sign((n-i) mod 4)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/4)+1) * (1-sign(i mod 4)) * (Product_{j=1..4} (i-j+1)).

EXAMPLE

a(1) = 1;

a(2) = 1*2 = 2;

a(3) = 1*2*3 = 6;

a(4) = 1*2*3*4 = 24;

a(5) = 1*2*3*4 - 5 = 19;

a(6) = 1*2*3*4 - 5*6 = -6;

a(7) = 1*2*3*4 - 5*6*7 = -186;

a(8) = 1*2*3*4 - 5*6*7*8 = -1656;

a(9) = 1*2*3*4 - 5*6*7*8 + 9 = -1647;

a(10) = 1*2*3*4 - 5*6*7*8 + 9*10 = -1566;

a(11) = 1*2*3*4 - 5*6*7*8 + 9*10*11 = -666;

a(12) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 = 10224;

a(13) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 - 13 = 10211;

a(14) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 - 13*14 = 10042;

a(15) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 - 13*14*15 = 7494; etc.

MATHEMATICA

a[n_]:=(-1)^Floor[n/4]*Sum[(1-Sign[Mod[n-i, 4]])*Product[n-j+1, {j, 1, i}], {i, 1, 3}]+Sum[(-1)^(Floor[i/4]+1)*(1-Sign[Mod[i, 4]])*Product[i-j+1, {j, 1, 3}], {i, 1, n}]; Array[a, 30] (* Stefano Spezia, Sep 23 2018 *)

CROSSREFS

For similar sequences, see: A001057 (k=1), A319373 (k=2), A319543 (k=3), this sequence (k=4), A319545 (k=5), A319546 (k=6), A319547 (k=7), A319549 (k=8), A319550 (k=9), A319551 (k=10).

Cf. A319205.

Sequence in context: A004154 A076126 A263692 * A124900 A068819 A060068

Adjacent sequences:  A319541 A319542 A319543 * A319545 A319546 A319547

KEYWORD

sign,easy

AUTHOR

Wesley Ivan Hurt, Sep 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 19:52 EDT 2020. Contains 336381 sequences. (Running on oeis4.)