login
A319533
The 10-adic integer z = ...6063360000129 satisfying z^7 + 1 = w, w^7 + 1 = x, x^7 + 1 = y, and y^7 + 1 = z.
4
9, 2, 1, 0, 0, 0, 0, 6, 3, 3, 6, 0, 6, 5, 7, 2, 9, 4, 6, 4, 1, 9, 9, 4, 0, 6, 2, 6, 2, 2, 9, 9, 3, 3, 6, 7, 2, 6, 8, 6, 8, 2, 7, 3, 5, 7, 0, 4, 8, 8, 4, 2, 7, 8, 8, 7, 3, 8, 5, 1, 7, 6, 2, 0, 1, 1, 5, 3, 8, 0, 6, 0, 5, 5, 9, 6, 7, 7, 5, 2, 4, 1, 8, 0, 7, 8, 2, 8, 9, 3, 4, 6, 4, 3, 3, 7, 3, 5, 6, 6, 0
OFFSET
0,1
LINKS
EXAMPLE
6063360000129^7 + 1 == 6485222491010 (mod 10^13),
6485222491010^7 + 1 == 7537010000001 (mod 10^13),
7537010000001^7 + 1 == 2759070000002 (mod 10^13),
2759070000002^7 + 1 == 6063360000129 (mod 10^13).
CROSSREFS
Cf. A319530 (w), A319531 (x), A319532 (y).
Sequence in context: A153463 A240985 A296460 * A010160 A093962 A350298
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Sep 22 2018
STATUS
approved