login
A319531
The 10-adic integer x = ...7537010000001 satisfying x^7 + 1 = y, y^7 + 1 = z, z^7 + 1 = w, and w^7 + 1 = x.
4
1, 0, 0, 0, 0, 0, 0, 1, 0, 7, 3, 5, 7, 7, 0, 6, 1, 7, 4, 9, 5, 6, 0, 1, 9, 2, 4, 7, 5, 8, 6, 3, 5, 5, 5, 5, 9, 6, 8, 8, 5, 8, 6, 7, 8, 0, 7, 0, 5, 8, 0, 1, 7, 3, 9, 5, 4, 5, 6, 9, 4, 3, 9, 2, 0, 2, 7, 7, 7, 4, 8, 8, 8, 4, 1, 6, 6, 5, 9, 9, 1, 1, 5, 3, 8, 9, 1, 6, 3, 1, 8, 7, 6, 8, 1, 9, 8, 3, 2, 8, 7
OFFSET
0,10
LINKS
EXAMPLE
7537010000001^7 + 1 == 2759070000002 (mod 10^13),
2759070000002^7 + 1 == 6063360000129 (mod 10^13),
6063360000129^7 + 1 == 6485222491010 (mod 10^13),
6485222491010^7 + 1 == 7537010000001 (mod 10^13).
CROSSREFS
Cf. A319530 (w), A319532 (y), A319533 (z).
Sequence in context: A119714 A154889 A135002 * A175452 A084714 A340820
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Sep 22 2018
STATUS
approved