login
The 10-adic integer w = ...6485222491010 satisfying w^7 + 1 = x, x^7 + 1 = y, y^7 + 1 = z, and z^7 + 1 = w.
4

%I #14 Sep 24 2018 10:49:26

%S 0,1,0,1,9,4,2,2,2,5,8,4,6,1,4,7,3,1,8,7,2,6,0,1,3,9,9,9,3,3,4,2,7,4,

%T 2,7,8,2,4,3,1,7,3,1,1,0,7,3,8,7,7,8,0,3,2,3,6,2,7,5,8,7,6,3,0,5,1,3,

%U 5,8,0,3,9,3,9,6,1,7,8,8,2,1,1,4,3,7,4,0,5,6,2,2,2,2,6,2,6,0,1,6,9

%N The 10-adic integer w = ...6485222491010 satisfying w^7 + 1 = x, x^7 + 1 = y, y^7 + 1 = z, and z^7 + 1 = w.

%H Seiichi Manyama, <a href="/A319530/b319530.txt">Table of n, a(n) for n = 0..5000</a>

%e 6485222491010^7 + 1 == 7537010000001 (mod 10^13),

%e 7537010000001^7 + 1 == 2759070000002 (mod 10^13),

%e 2759070000002^7 + 1 == 6063360000129 (mod 10^13),

%e 6063360000129^7 + 1 == 6485222491010 (mod 10^13).

%Y Cf. A319531 (x), A319532 (y), A319533 (z).

%Y Cf. A319260, A319261, A319262, A319263.

%K nonn,base

%O 0,5

%A _Seiichi Manyama_, Sep 22 2018