login
A319475
Number of partitions of n into exactly ten nonzero decimal palindromes.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 52, 70, 88, 114, 141, 178, 215, 265, 315, 380, 445, 526, 606, 705, 801, 916, 1027, 1159, 1282, 1427, 1561, 1715, 1855, 2015, 2157, 2318, 2458, 2614, 2747, 2897, 3018, 3157, 3266, 3390, 3485
OFFSET
0,13
LINKS
FORMULA
a(n) = [x^n y^10] 1/Product_{j>=2} (1-y*x^A002113(j)).
MAPLE
p:= proc(n) option remember; local i, s; s:= ""||n;
for i to iquo(length(s), 2) do if
s[i]<>s[-i] then return false fi od; true
end:
h:= proc(n) option remember; `if`(n<1, 0,
`if`(p(n), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i<n,
0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(10):
seq(a(n), n=0..100);
CROSSREFS
Column k=10 of A319453.
Cf. A002113.
Sequence in context: A347574 A238866 A035978 * A319454 A023029 A358909
KEYWORD
nonn,base
AUTHOR
Alois P. Heinz, Sep 19 2018
STATUS
approved