login
A319474
Number of partitions of n into exactly nine nonzero decimal palindromes.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 51, 68, 85, 109, 134, 167, 200, 244, 286, 341, 395, 460, 523, 600, 671, 756, 835, 926, 1008, 1103, 1185, 1280, 1360, 1450, 1524, 1609, 1673, 1748, 1803, 1867, 1910, 1965, 1996, 2039, 2063, 2096
OFFSET
0,12
LINKS
FORMULA
a(n) = [x^n y^9] 1/Product_{j>=2} (1-y*x^A002113(j)).
MAPLE
p:= proc(n) option remember; local i, s; s:= ""||n;
for i to iquo(length(s), 2) do if
s[i]<>s[-i] then return false fi od; true
end:
h:= proc(n) option remember; `if`(n<1, 0,
`if`(p(n), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i<n,
0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(9):
seq(a(n), n=0..100);
CROSSREFS
Column k=9 of A319453.
Cf. A002113.
Sequence in context: A354468 A309194 A330640 * A218508 A340719 A026814
KEYWORD
nonn,base
AUTHOR
Alois P. Heinz, Sep 19 2018
STATUS
approved