

A319469


Number of partitions of n into exactly four nonzero decimal palindromes.


2



0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 17, 22, 24, 29, 31, 35, 36, 40, 39, 41, 39, 40, 37, 37, 33, 33, 29, 28, 25, 25, 22, 22, 21, 21, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,7


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000


FORMULA

a(n) = [x^n y^4] 1/Product_{j>=2} (1y*x^A002113(j)).


MAPLE

p:= proc(n) option remember; local i, s; s:= ""n;
for i to iquo(length(s), 2) do if
s[i]<>s[i] then return false fi od; true
end:
h:= proc(n) option remember; `if`(n<1, 0,
`if`(p(n), n, h(n1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i<n,
0, b(n, h(i1), t)+b(ni, h(min(ni, i)), t1)))
end:
a:= n> (k> b(n, h(n), k)b(n, h(n), k1))(4):
seq(a(n), n=0..100);


CROSSREFS

Column k=4 of A319453.
Cf. A002113.
Sequence in context: A123399 A239010 A104738 * A028309 A242717 A026810
Adjacent sequences: A319466 A319467 A319468 * A319470 A319471 A319472


KEYWORD

nonn,base,look


AUTHOR

Alois P. Heinz, Sep 19 2018


STATUS

approved



