OFFSET
1,6
COMMENTS
Equivalent of omega (A001221) in the ring of Eisenstein integers.
z is an Eisenstein prime iff z has prime norm or z is the product of a rational prime congruent to 2 modulo 3 and an Eisenstein unit (one of +-1 or (+-1 +- sqrt(3)*i)/2).
Associated Eisenstein prime divisors are counted only once.
LINKS
Jianing Song, Table of n, a(n) for n = 1..10000
Wikipedia, Eisenstein integer
FORMULA
Additive with a(p^e) = 2 if p == 1 (mod 3), 1 otherwise.
EXAMPLE
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
Over the Gaussian integers, 5187 = 3*7*13*19 is factored as w'*(1 + w)^2*(2 + w)*(2 + w')*(3 + w)*(3 + w')*(3 + 2w)*(3 + 2w'), the distinct Eisenstein prime factors are 1 + w, 2 + w, 2 + w', 3 + w, 3 + w', 3 + 2w and 3 + 2w', so a(5187) = 7.
Over the Gaussian integers, 1006655265000 = 2^3*3^2*5^4*7^5*11^3 is factored as w'^2*(1 + w)^4*2^3*(2 + w)*(2 + w')*5^4*11^3, the distinct Eisenstein prime factors are 1 + w, 2, 2 + w, 2 + w', 5 and 11, so a(1006655265000) = 6.
MATHEMATICA
f[p_, e_] := If[Mod[p, 3] == 1, 2, 1]; eisOmega[1] = 0; eisOmega[n_] := Plus @@ f @@@ FactorInteger[n]; Array[eisOmega, 100] (* Amiram Eldar, Feb 10 2020 *)
PROG
(PARI) a(n)=my(f=factor(n)[, 1]); sum(i=1, #f, if(f[i]%3==1, 2, 1))
CROSSREFS
Cf. A121940.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), this sequence ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A086275.
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 19 2018
STATUS
approved