login
A319415
Total runs-resistance of all binary vectors of length n.
2
2, 6, 18, 44, 110, 216, 498, 1030, 2166, 4494, 9382, 19256, 39794, 81452, 166520, 339588, 691850, 1405540, 2856000, 5793242, 11743728, 23782412, 48133328, 97335320, 196737218, 397413614, 802432322, 1619527864, 3267496300, 6590092572, 13287437168, 26783489454
OFFSET
1,1
COMMENTS
See triangle in A319411.
If we divide a(n) by 2^n, we get the average runs-resistances, which are 1, 3/2, 9/4, 11/4, 55/16, 27/8, 249/64, 515/128, 1083/256, 2247/512, 4691/1024, 2407/512, ..., or, in other words, 1, 1.500000000, 2.250000000, 2.750000000, 3.437500000, 3.375000000, 3.890625000, 4.023437500, 4.230468750, 4.388671875, 4.581054688, 4.701171875, ... How does this grow?
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..75
Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003.
CROSSREFS
Sequence in context: A192708 A233531 A320303 * A230137 A120414 A251685
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 20 2018
EXTENSIONS
a(13)-a(32) from Hiroaki Yamanouchi, Sep 25 2018
STATUS
approved