login
A319403
Number of partitions of n into exactly ten positive Fibonacci numbers.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 14, 15, 19, 20, 24, 25, 31, 30, 35, 36, 42, 42, 48, 47, 54, 54, 59, 60, 69, 66, 73, 72, 80, 79, 86, 85, 92, 91, 97, 96, 107, 103, 110, 110, 118, 117, 123, 123, 132, 130, 135, 134, 142, 141, 146, 145
OFFSET
0,13
LINKS
FORMULA
a(n) = [x^n y^10] 1/Product_{j>=2} (1-y*x^A000045(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0, `if`((t->
issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or
t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(10):
seq(a(n), n=0..120);
CROSSREFS
Column k=10 of A319394.
Cf. A000045.
Sequence in context: A319401 A322369 A319402 * A029008 A240844 A136343
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, Sep 18 2018
STATUS
approved