login
A319402
Number of partitions of n into exactly nine positive Fibonacci numbers.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 13, 14, 18, 18, 22, 23, 27, 26, 31, 30, 36, 36, 39, 39, 45, 43, 49, 49, 55, 52, 58, 56, 63, 62, 65, 64, 71, 68, 73, 72, 79, 77, 82, 81, 87, 86, 90, 89, 96, 93, 96, 96, 101, 100, 101, 100, 107, 103, 108
OFFSET
0,12
LINKS
FORMULA
a(n) = [x^n y^9] 1/Product_{j>=2} (1-y*x^A000045(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0, `if`((t->
issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or
t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(9):
seq(a(n), n=0..120);
CROSSREFS
Column k=9 of A319394.
Cf. A000045.
Sequence in context: A318029 A319401 A322369 * A319403 A029008 A240844
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, Sep 18 2018
STATUS
approved