login
a(n) = [x^n] exp(Sum_{k>=1} sigma_n(k)*x^k/k).
1

%I #4 Sep 17 2018 15:42:52

%S 1,1,3,14,136,2411,88903,6309849,866470849,240522266760,

%T 132000248840652,141226630324344532,306101744973083495408,

%U 1327520858367342045830198,11328405846086223895036194126,196814026990537767059856457640779,6894163531963490274906095710739747873

%N a(n) = [x^n] exp(Sum_{k>=1} sigma_n(k)*x^k/k).

%F a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(k^(n-1)).

%t Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n, k] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 16}]

%t Table[SeriesCoefficient[Product[1/(1 - x^k)^(k^(n - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 16}]

%Y Diagonal of A144048.

%Y Cf. A252782, A305207.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Sep 17 2018