OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A319356.
The only duplicates in range 1..65537 with a(n) > 4 are the following six pairs: a(1445) = a(2783), a(4205) = a(11849), a(5819) = a(8381), a(6727) = a(15523), a(8405) = a(31211) and a(28577) = a(44573). All these have prime signature p^2 * q^1. If all the other duplicates respect the prime signature as well, then also the last implication given below is valid.
For all i, j:
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
EXAMPLE
Proper divisors of 1445 are [1, 5, 17, 85, 289], while the proper divisors of 2783 are [1, 11, 23, 121, 253]. 1 contributes 0 and primes contribute 1, so only the last two matter in each set. We have A003415(85) = 22 = A003415(121) and A003415(289) = 34 = A003415(253), thus the value of arithmetic derivative coincides for all proper divisors, thus a(1445) = a(2783).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
v319357 = rgs_transform(vector(up_to, n, A319356(n)));
A319357(n) = v319357[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 02 2018
STATUS
approved