login
A319282
Numbers of the form 16^i*(16*j + 15).
3
15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 240, 255, 271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 496, 511, 527, 543, 559, 575, 591, 607, 623, 639, 655, 671, 687, 703, 719, 735, 751, 752, 767, 783, 799, 815
OFFSET
1,1
COMMENTS
{-a(n)} gives all negative fourth powers modulo all powers of 2, that is, negative fourth powers over 2-adic integers.
LINKS
Jianing Song, Table of n, a(n) for n = 1..9999 (all terms <= 150000)
FORMULA
a(n) = 15*n + O(log(n)).
PROG
(PARI) isA319282(n)= n\16^valuation(n, 16)%16==15
CROSSREFS
A125169 is a proper subsequence.
Perfect powers over 2-adic integers:
Squares: positive: A234000; negative: A004215 (negated);
Cubes: A191257;
Fourth powers: positive: A319281; negative: this sequence (negated).
Sequence in context: A031467 A045063 A044076 * A125169 A044457 A249452
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 16 2018
STATUS
approved