%I
%S 6,2,6,0,9,8,2,2,7,2,4,6,4,5,9,9,7,2,2,0,3,5,8,8,4,3,4,2,2,8,7,2,2,6,
%T 1,8,4,6,9,7,4,2,1,4,7,8,3,2,3,3,6,6,3,2,8,7,1,6,7,6,7,3,5,9,4,3,3,8,
%U 6,6,4,2,6,4,5,2,8,2,5,9,3,3,8,9,9,8,2,8,5,6,6,4,4
%N The 10adic integer y = ...22890626 satisfying y^7 + 1 = z, z^7 + 1 = w, w^7 + 1 = x, and x^7 + 1 = y.
%C There is one other ring of four 10adic integers meeting the same conditions.
%H Seiichi Manyama, <a href="/A319262/b319262.txt">Table of n, a(n) for n = 0..5000</a>
%e 22890626^7 + 1 == 57109377 (mod 10^8), 57109377^7 + 1 == 72890754 (mod 10^8), 72890754^7 + 1 == 9600385 (mod 10^8), and 9600385^7 + 1 == 22890626 (mod 10^8).
%Y Cf. A319260 (w), A319261 (x) A319263 (z).
%Y Cf. A317850, A317864.
%K nonn,base
%O 0,1
%A _Patrick A. Thomas_, Sep 16 2018
%E Offset changed to 0 by _Seiichi Manyama_, Sep 21 2018
%E More terms from _Seiichi Manyama_, Sep 21 2018
