login
The 10-adic integer w = ...72890754 satisfying w^7 + 1 = x, x^7 + 1 = y, y^7 + 1 = z, and z^7 + 1 = w.
8

%I #15 Sep 22 2018 03:44:49

%S 4,5,7,0,9,8,2,7,0,9,6,1,3,3,6,6,5,0,4,5,8,7,7,2,6,6,2,1,9,1,0,9,0,4,

%T 2,0,8,5,9,5,7,6,1,0,4,5,7,5,6,3,0,8,3,7,7,9,0,9,6,8,9,6,8,6,5,2,1,4,

%U 7,2,2,4,2,5,3,3,9,4,1,2,6,3,1,7,8,7,3,0,2,9,2,3,2,6

%N The 10-adic integer w = ...72890754 satisfying w^7 + 1 = x, x^7 + 1 = y, y^7 + 1 = z, and z^7 + 1 = w.

%C There is one other ring of four 10-adic integers satisfying the same conditions.

%H Seiichi Manyama, <a href="/A319260/b319260.txt">Table of n, a(n) for n = 0..5000</a>

%e 72890754^7 + 1 == 9600385 (mod 10^8), 9600385^7 + 1 == 22890626 (mod 10^8), 22890626^7 + 1 == 57109377 (mod 10^8), and 57109377^7 + 1 == 72890754 (mod 10^8).

%Y Cf. A319261 (x), A319262 (y), A319263 (z).

%Y Cf. A317850, A317864.

%K nonn,base

%O 0,1

%A _Patrick A. Thomas_, Sep 16 2018

%E Offset changed to 0 by _Seiichi Manyama_, Sep 21 2018

%E More terms from _Seiichi Manyama_, Sep 21 2018