login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319168 Frobenius pseudoprimes == 1,4 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1. 0
4181, 6721, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 90061, 96049, 97921, 118441, 146611, 163081, 186961, 197209, 219781, 252601, 254321, 257761, 268801, 272611, 283361, 302101, 303101, 330929, 399001, 433621, 438751, 489601, 512461, 520801 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Complement of A212423 with respect to A212424.

Intersection of A212424 and A047209.

Composite k == 1,4 (mod 5) such that Fibonacci(k) == 1 (mod k) and that k divides Fibonacci(k-1).

LINKS

Table of n, a(n) for n=1..34.

Jon Grantham, Frobenius pseudoprimes, Mathematics of Computation 70 (234): 873-891, 2001. doi: 10.1090/S0025-5718-00-01197-2.

A. Rotkiewicz, Lucas and Frobenius Pseudoprimes, Annales Mathematicae Silesiane, 17 (2003): 17-39.

Eric W. Weisstein, Frobenius Pseudoprime, MathWorld.

EXAMPLE

4181 = 37*113 is composite, while Fibonacci(4180) == 0 (mod 4181), Fibonacci(4181) == 1 (mod 4181), so 4181 is a term.

PROG

(PARI) for(n=2, 500000, if(!isprime(n) && (n%5==1||n%5==4) && fibonacci(n-kronecker(5, n))%n==0 && (fibonacci(n)-kronecker(5, n))%n==0, print1(n, ", ")))

CROSSREFS

Cf. A047209, A093372, A094394, A094401, A212423, A212424.

Sequence in context: A049062 A093372 A212424 * A091982 A238082 A072322

Adjacent sequences:  A319165 A319166 A319167 * A319169 A319170 A319171

KEYWORD

nonn

AUTHOR

Jianing Song, Sep 12 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 23:02 EDT 2019. Contains 321565 sequences. (Running on oeis4.)