%I #45 Sep 09 2019 04:33:15
%S 2,2,9,6,6,3,0,2,6,2,8,8,6,5,3,8,2,4,5,7,0,4,9,4,1,9,1,7,7,3,6,1,7,0,
%T 2,7,1,2,2,2,6,0,6,8,5,2,5,8,2,8,4,2,6,8,9,1,2,1,8,8,0,0,0,0,8,0,4,9,
%U 2,9,9,2,2,4,5,0,3,4,8,9,8,1
%N Decimal expansion of (1 + sqrt(3) + sqrt(2*sqrt(3)))/2.
%C This constant and its reciprocal are the real solutions of x^4 - 2*x^3 - 2*x + 1 = (x^2 - (sqrt(3)+1)*x + 1)*(x^2 + (sqrt(3)-1)*x + 1) = 0.
%C Decimal expansion of the largest x satisfying x^2 - (1 + sqrt(3))*x + 1 = 0.
%H A.H.M. Smeets, <a href="/A319129/b319129.txt">Table of n, a(n) for n = 0..20000</a>
%e 2.29663026288653824570494191773617027122260685258284268912188000080492992...
%p Digits:=100: evalf((1+sqrt(3)+sqrt(2*sqrt(3)))/2); # _Muniru A Asiru_, Sep 12 2018
%t RealDigits[(1 + Sqrt[3] + Sqrt[2 Sqrt[3]])/2, 10, 100][[1]] (* _Bruno Berselli_, Sep 13 2018 *)
%o (PARI) (1+sqrt(3)+sqrt(2*sqrt(3)))/2 \\ _Altug Alkan_, Sep 11 2018
%Y Cf. A318605.
%K nonn,cons
%O 0,1
%A _A.H.M. Smeets_, Sep 11 2018