login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319112 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^prime(k)/prime(k)). 1
1, 0, 1, 2, 6, 44, 170, 1644, 7448, 72624, 653112, 8510160, 62704752, 1324662624, 10772812752, 167386388064, 2413326453120, 52610523489024, 597065112874368, 18066985168806144, 212119023906342144, 4734822914239173120, 100734270778298352384, 2818116390408742291968, 48201015565806837709824 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..24.

FORMULA

E.g.f.: exp(Sum_{k>=1} ( Sum_{p|k, p prime} p^(1-k/p) ) * x^k/k).

MAPLE

seq(n!*coeff(series(mul(1/(1-x^ithprime(k)/ithprime(k)), k=1..100), x=0, 25), x, n), n=0..24); # Paolo P. Lava, Jan 09 2019

MATHEMATICA

nmax = 24; CoefficientList[Series[Product[1/(1 - x^Prime[k]/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

nmax = 24; CoefficientList[Series[Exp[Sum[Sum[Boole[PrimeQ[d]] d^(1 - k/d), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[Boole[PrimeQ[d]] d^(1 - k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 24}]

CROSSREFS

Cf. A002098, A007841, A319113.

Sequence in context: A135815 A055564 A077259 * A136589 A077048 A277479

Adjacent sequences:  A319109 A319110 A319111 * A319113 A319114 A319115

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Sep 10 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 00:52 EDT 2020. Contains 337228 sequences. (Running on oeis4.)