The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319108 Expansion of Product_{k>=1} (1 - x^k)^(k-1). 0
 1, 0, -1, -2, -3, -2, -1, 4, 8, 14, 17, 18, 9, -4, -27, -58, -88, -114, -122, -106, -48, 48, 200, 376, 577, 746, 862, 840, 646, 208, -486, -1450, -2622, -3888, -5086, -5950, -6204, -5492, -3547, -44, 5036, 11732, 19582, 28034, 35932, 42042, 44519, 41660, 31450, 12382, -16721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Convolution of A000041 and A073592. Convolution inverse of A052847. LINKS FORMULA G.f.: exp(Sum_{k>=1} (sigma_1(k) - sigma_2(k))*x^k/k), where sigma_1(k) = sum of divisors of k (A000203) and sigma_2(k) = sum of squares of divisors of k (A001157). MAPLE a:=series(mul((1-x^k)^(k-1), k=1..100), x=0, 51): seq(coeff(a, x, n), n=0..50); # Paolo P. Lava, Apr 02 2019 MATHEMATICA nmax = 50; CoefficientList[Series[Product[(1 - x^k)^(k - 1), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 50; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - DivisorSigma[2, k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (1 - d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}] CROSSREFS Cf. A000041, A000203, A001157, A052847, A073592, A299019. Sequence in context: A104411 A216084 A055101 * A349633 A238165 A081316 Adjacent sequences: A319105 A319106 A319107 * A319109 A319110 A319111 KEYWORD sign AUTHOR Ilya Gutkovskiy, Sep 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 10:03 EST 2022. Contains 358630 sequences. (Running on oeis4.)