login
A319079
Number of connected antichains of sets whose multiset union is an integer partition of n.
2
1, 1, 2, 3, 4, 4, 8, 7, 12, 15, 19, 26, 43
OFFSET
0,3
EXAMPLE
The a(10) = 19 clutters:
{{10}}
{{1,9}}
{{2,8}}
{{3,7}}
{{4,6}}
{{1,2,7}}
{{1,3,6}}
{{1,4,5}}
{{2,3,5}}
{{1,2,3,4}}
{{5},{5}}
{{1,2},{1,6}}
{{1,2},{2,5}}
{{1,3},{1,5}}
{{1,4},{1,4}}
{{2,3},{2,3}}
{{1,2},{1,2},{1,3}}
{{2},{2},{2},{2},{2}}
{{1},{1},{1},{1},{1},{1},{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
antiQ[s_]:=Select[Tuples[s, 2], And[UnsameQ@@#, submultisetQ@@#]&]=={};
Table[Length[Select[Join@@mps/@IntegerPartitions[n], And[And@@UnsameQ@@@#, Length[csm[#]]==1, antiQ[#]]&]], {n, 10}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 12 2018
STATUS
approved