This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319078 Expansion of phi(-q) * phi(q)^2 in powers of q where phi() is a Ramanujan theta function. 0
 1, 2, -4, -8, 6, 8, -8, 0, 12, 10, -8, -24, 8, 8, -16, 0, 6, 16, -12, -24, 24, 16, -8, 0, 24, 10, -24, -32, 0, 24, -16, 0, 12, 16, -16, -48, 30, 8, -24, 0, 24, 32, -16, -24, 24, 24, -16, 0, 8, 18, -28, -48, 24, 24, -32, 0, 48, 16, -8, -72, 0, 24, -32, 0, 6, 32 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q^2)^9 / (eta(q)^2 * eta(q^4)^4) in powers of q. Expansion of phi(q) * phi(-q^2)^2 = phi(-q^2)^4 / phi(-q) in powers of q. Euler transform of period 4 sequence [2, -7, 2, -3, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(11/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A045834. G.f. Product_{k>0}  (1 - x^k)^3 * (1 + x^k)^5 / (1 + x^(2*k))^4. a(n) = (-1)^n * A212885(n) = A083703(2*n) = A080965(2*n). a(4*n) = a(n) * -A132429(n + 2) where A132429 is a period 4 sequence. a(4*n) = A005875(n). a(4*n + 1) = 2 * A045834(n). a(4*n + 2) = -4 * A045828(n). a(8*n) = A004015(n). a(8*n + 1) = 2 * A213022(n). a(8*n + 2) = -4 * A213625(n). a(8*n + 3) = -8 * A008443(n). a(8*n + 4) = A005887(n). a(8*n + 5) = 2 * A004024(n). a(8*n + 6) = -8 * A213624(n). a(8*n + 7) = 0. EXAMPLE G.f. = 1 + 2*x - 4*x^2 - 8*x^3 + 6*x^4 + 8*x^5 - 8*x^6 + 12*x^8 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q]^2, {q, 0, n}]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^2]^2, {q, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 / (eta(x + A)^2 * eta(x^4 + A)^4), n))}; (MAGMA) A := Basis( ModularForms( Gamma0(16), 3/2), 66); A[1] + 2*A[2] - 4*A[3] - 8*A[4]; CROSSREFS Cf. A004015, A004024, A005887, A008443, A045834, A083703, A080965, A132429, A212885, A213624. Sequence in context: A247576 A246821 A212885 * A246631 A320153 A138284 Adjacent sequences:  A319075 A319076 A319077 * A319079 A319080 A319081 KEYWORD sign AUTHOR Michael Somos, Sep 09 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 02:30 EST 2019. Contains 329850 sequences. (Running on oeis4.)