login
A319063
A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..5, with k running over the positive integers; square array, read by antidiagonals, downwards.
7
132857, 171793, 2006776, 261593, 3091832, 296449, 618301, 3420818, 9654224, 17134811, 700993, 3524932, 11002557, 23250274, 36763941, 997757, 4108582, 16616568, 26073470, 195603158, 34998229, 1211201, 4349699, 20512643, 26646377, 307849316, 71724464
OFFSET
1,1
EXAMPLE
The array starts as follows:
132857, 171793, 261593, 618301, 700993, 997757, 1211201
2006776, 3091832, 3420818, 3524932, 4108582, 4349699, 4416499
296449, 9654224, 11002557, 16616568, 20512643, 20950343, 21184318
17134811, 23250274, 26073470, 26646377, 44247410, 49287925, 49975689
36763941, 195603158, 307849316, 364769263, 366974980, 395009864, 428594624
34998229, 71724464, 124024853, 279238292, 709701384, 710808570
MATHEMATICA
rows = 6; t = 5;
T = Table[lst = {}; b = 2;
While[Length[lst] < rows,
p = Prime[n + Range[0, t]];
If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &],
AppendTo[lst, b]]; b++];
lst, {n, rows}];
T // TableForm (* Print the A(n, k) table *)
Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Oct 01 2019 *)
PROG
(PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 5, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==6, print1(b, ", "); c++); if(c==terms, break))
array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
array(8, 8) \\ print initial 8 rows and 8 columns of array
CROSSREFS
Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319061 (t=3), A319062 (t=4), A319064 (t=6), A319065 (t=7).
Sequence in context: A238233 A242327 A339535 * A344830 A015407 A204536
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Sep 09 2018
STATUS
approved