login
Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(phi(k)/k), where phi is the Euler totient function A000010.
5

%I #11 Feb 28 2024 10:49:04

%S 1,2,6,32,196,1512,13384,135872,1545744,19441952,268386784,4018603008,

%T 65021744704,1127284876928,20880206388864,410781080941568,

%U 8561002328678656,188224613741879808,4355496092560324096,105752112730661347328,2688539359466319184896

%N Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(phi(k)/k), where phi is the Euler totient function A000010.

%C Convolution of A088009 and A000262.

%H Vaclav Kotesovec, <a href="/A318976/b318976.txt">Table of n, a(n) for n = 0..440</a>

%F E.g.f.: exp(x*(2 + x)/(1 - x^2)).

%F a(n) ~ 2^(-3/4) * 3^(1/4) * exp(sqrt(6*n) - n - 1/2) * n^(n - 1/4).

%t nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(EulerPhi[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

%t nmax = 20; CoefficientList[Series[E^(x*(2 + x)/(1 - x^2)), {x, 0, nmax}], x] * Range[0, nmax]!

%Y Cf. A000262, A088009, A318814, A318977.

%Y Cf. A318975, A301555, A301554.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Sep 06 2018