login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318972 The 7x+-1 function ("shortcut" definition): a(n) = (7n+1)/4 if n == +1 (mod 4), a(n) = (7n-1)/4 if n == -1 (mod 4), otherwise a(n) = n/2. 1
0, 2, 1, 5, 2, 9, 3, 12, 4, 16, 5, 19, 6, 23, 7, 26, 8, 30, 9, 33, 10, 37, 11, 40, 12, 44, 13, 47, 14, 51, 15, 54, 16, 58, 17, 61, 18, 65, 19, 68, 20, 72, 21, 75, 22, 79, 23, 82, 24, 86, 25, 89, 26, 93, 27, 96, 28, 100, 29, 103, 30, 107, 31, 110, 32, 114, 33, 117, 34, 121 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See A317640 for another definition of this problem.

LINKS

Table of n, a(n) for n=0..69.

D. Barina, 7x+-1: Close Relative of Collatz Problem, arXiv:1807.00908 [math.NT], 2018.

K. Matthews, David Barina's 7x+1 conjecture.

FORMULA

a(n) = a(a(2*n))

From Chai Wah Wu, Nov 09 2018: (Start)

a(n) = a(n-2) + a(n-4) - a(n-6) for n > 5.

G.f.: x*(2*x^4 + x^3 + 3*x^2 + x + 2)/(x^6 - x^4 - x^2 + 1). (End)

EXAMPLE

a(3) = 5 because 3 == -1 (mod 4), and thus (7*3 - 1)/4 results in 5.

a(5) = 9 because 5 == +1 (mod 4), and thus (7*5 + 1)/4 results in 9.

PROG

(C)

int a(int n) {

....switch(n%4) {

........case 1: return (7*n+1)/4;

........case 3: return (7*n-1)/4;

........default: return n/2;

....}

}

(PARI) a(n) = my(m=n%4); if (m==1, (7*n+1)/4, if (m==3, (7*n-1)/4, n/2)); \\ Michel Marcus, Sep 06 2018

(Python)

from __future__ import division

def A318972(n):

    return (7*n+1)//4 if n % 4 == 1 else (7*n-1)//4 if n % 4 == 3 else n//2 # Chai Wah Wu, Nov 09 2018

CROSSREFS

Cf. A014682 (3x+1 equivalent), A317640.

Sequence in context: A257971 A205377 A082010 * A275213 A113176 A113175

Adjacent sequences:  A318969 A318970 A318971 * A318973 A318974 A318975

KEYWORD

nonn,easy

AUTHOR

David Barina, Sep 06 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 20:59 EDT 2019. Contains 322328 sequences. (Running on oeis4.)