This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318972 The 7x+-1 function ("shortcut" definition): a(n) = (7n+1)/4 if n == +1 (mod 4), a(n) = (7n-1)/4 if n == -1 (mod 4), otherwise a(n) = n/2. 1
 0, 2, 1, 5, 2, 9, 3, 12, 4, 16, 5, 19, 6, 23, 7, 26, 8, 30, 9, 33, 10, 37, 11, 40, 12, 44, 13, 47, 14, 51, 15, 54, 16, 58, 17, 61, 18, 65, 19, 68, 20, 72, 21, 75, 22, 79, 23, 82, 24, 86, 25, 89, 26, 93, 27, 96, 28, 100, 29, 103, 30, 107, 31, 110, 32, 114, 33, 117, 34, 121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See A317640 for another definition of this problem. LINKS D. Barina, 7x+-1: Close Relative of Collatz Problem, arXiv:1807.00908 [math.NT], 2018. K. Matthews, David Barina's 7x+1 conjecture. FORMULA a(n) = a(a(2*n)) From Chai Wah Wu, Nov 09 2018: (Start) a(n) = a(n-2) + a(n-4) - a(n-6) for n > 5. G.f.: x*(2*x^4 + x^3 + 3*x^2 + x + 2)/(x^6 - x^4 - x^2 + 1). (End) EXAMPLE a(3) = 5 because 3 == -1 (mod 4), and thus (7*3 - 1)/4 results in 5. a(5) = 9 because 5 == +1 (mod 4), and thus (7*5 + 1)/4 results in 9. PROG (C) int a(int n) { ....switch(n%4) { ........case 1: return (7*n+1)/4; ........case 3: return (7*n-1)/4; ........default: return n/2; ....} } (PARI) a(n) = my(m=n%4); if (m==1, (7*n+1)/4, if (m==3, (7*n-1)/4, n/2)); \\ Michel Marcus, Sep 06 2018 (Python) from __future__ import division def A318972(n):     return (7*n+1)//4 if n % 4 == 1 else (7*n-1)//4 if n % 4 == 3 else n//2 # Chai Wah Wu, Nov 09 2018 CROSSREFS Cf. A014682 (3x+1 equivalent), A317640. Sequence in context: A257971 A205377 A082010 * A275213 A113176 A113175 Adjacent sequences:  A318969 A318970 A318971 * A318973 A318974 A318975 KEYWORD nonn,easy AUTHOR David Barina, Sep 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 20:59 EDT 2019. Contains 322328 sequences. (Running on oeis4.)